
PHYSICAL REVIEW E 66, 021102 ~2002!
Anisotropic diffusion and correlation analysis
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A method of statistical analysis of the correlation between two given scale invariant sequences is proposed.
The relation between the fractal dimension of a two-dimensional random walk, generated with jumps derived
from the signals, and the scaling exponents of the sequences is investigated, and a well-defined relation is
found in the case of statistically independent signals. The method of analysis, whose performance is described
for the case of an intermittent map, might represent a new tool for the study of the correlation between coupled
complex systems.
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I. INTRODUCTION

It is now well known that even very simple coupled no
linear equations can generate random behavior and
organized stuctures such as, for instance, vortices in fl
@1#. The diffusion approach, based on the pioneering con
bution of Hurst and Mandelbrot~see, e.g.,@2#!, is a method
to analyze such complex systems and to measure the l
range memory of a given sequence. This method allows
physical origin of fluctuations having finite variance to
explained and is able, in the case of steady systems, to d
the single or multiple scaling exponents and hence to rec
nize strange kinetics and anomalous diffusion@3,4#.

The discovery of the widespread existence, both
Hamiltonian and dissipative systems@5,6#, of stable pro-
cesses with infinite variance~Lévy processes! encouraged
the development of time-series analyses that do not invo
the mean-square displacement. A specific method to
with these systems is based on the evaluation of the sca
exponents via the Shannon entropy@7,8#. In the case of com-
plex systems described by a couple of sequen
$xi% i 51,N ,$yi% i 51,N , it is important for the real understandin
of the dynamics to analyze not only the average behavio
the coupling between the two sequences, but also its t
evolution. In fact, the simple evaluation of the mean cor
lation function is clearly misleading in the presence of,
example, intermittent features. On the other hand, in the c
of chaotic sequences dominated by a whole spectrum of
quencies, it is very difficult to detect time features using o
tools based on the Fourier transform, such as the wav
analysis~see, e.g.,@9,10#!. The aim of the present work is t
overcome these limitations by deriving a new function
correlationCq in the case of sequences characterized b
monoscaling property. This function, which is equal to ze
in the case of statistical independence, estimates the cor
tion distribution between$xi% i 51,N and$yi% i 51,N by evaluat-
ing the inhomogeneity of the two-dimensional trajecto
„zx( i ),zy( i )… defined as

zx~ i 11!5zx~ i !1xi ,

zy~ i 11!5zy~ i !1yi .
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Specifically, we show that, if the signals are statistica
independent, with scaling exponentsdx and dy , and with
finite mean value, the two-dimensional trajecto
„zx( i ),zy( i )…i 51,N is monofractal with fractal dimension

D5
dx1dy

2dxdy
. ~1!

The new correlation functionCq is able to recognize the
correlation evolution even in the case of chaotic maps
very noisy data where standard methods usually fail. As
example, we study a two-dimensional intermittent chao
map, having a mean correlation^xiyi& close to zero.

II. THE DIMENSIONAL CORRELATION

We begin by recalling the diffusion entropy method. T
main idea of the entropy method is remarkably simple an
based on the generalized central limit theorem@11#. We have
to analyze a single signal$xi% i 51,N and to detect, if it exists,
the scaling exponentd which is a measure of the long-rang
memory of the sequence. Many stationary phenomena
indeed characterized by a single scaling exponent; our an
sis will be limited to just this class of time sequences. Let
consider an integer numbert, with 1,t,N, which will be
referred to as ‘‘time.’’ We thus generateN2t11 ‘‘trajecto-
ries’’ considering the following sums:

zj~ t !5 (
i 5 j

i 5 j 1t

xi . ~2!

Therefore, the valuezj (t) has to be considered the final po
sition of a walker which jumped fort times. If p(z,t) is the
probability to be in positionz after t jumps, we want to
observe the ‘‘time’’ evolution of such a distribution. Th
monoscaling condition means that the probability follows t
following rule:

p~z,t !5
1

td
FS z

tdD , ~3!
©2002 The American Physical Society02-1
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where F, due to the central limit theorem, is Gaussian-
Lévy-shaped. The diffusion entropy method evaluates
scaling exponentd by calculating the Shannon entropy of th
probability p(z,t),

S~ t !52E
2`

1`

p~z,t !ln„p~z,t !…dz. ~4!

Indeed, for a distribution having scaling properties, it is ve
easy to demonstrate, by substituting Eq.~3! into Eq.~4!, that
S(t)5A1d lnt, whereA is the Shannon entropy of the ge
erating functionF. The diffusion entropy method is very use
ful to understand the dynamics when$xi% i 51,N areN statisti-
cally independent random numbers with infinite variance
fact, if the probability density functionp(x) of the random
numbers goes to infinity as a power law, withp(x)'x2m,
the generalized central limit theorem, developed by P
Lévy in the 1920s and 1930s, allows the relation betweenm
and the scaling exponentd to be estimated:

d5
1

m21
for 1,m,3,

d50.5 for m.3. ~5!

In an experimental situation we can evaluate both
power law of the distribution, by observing the statistics
the data, and the scaling exponentd, by calculating the Sh-
annon entropy. In the presence of a single scaling expo
d, if the relations~5! are not satisfied, as for the huma
heartbeat@7#, we can assume that the random data
strongly correlated with long-range memory.

From a different point of view, it is possible to put i
relation the scaling exponentd of the time series with the
fractal dimension of the random walk,

z~ i !5(
j 51

i

xj , ~6!

generated by the sequence. It is easy to show~see, e.g.,@2#!,
by using the definition of moments, that if the sign
$xi% i 51,N has a scaling exponentd, then the generated trajec
tory @z( i )# i 51,N is monofractal with a fractal dimensionD
51/d. Indeed, if we evaluate the structure functions of t
trajectory@z( i )# i 51,N , we obtain the moments of the prev
ously defined distributionp(z,t),

^uzj~ t !uq&5E
2`

1`
uzuqp~z,t !dz5tdqAq . ~7!

Remembering that in the fractal literature@12# the linear be-
havior of the structure functions means that the trajector
homogeneous and hence monofractal, we can assume
signals$xi% i 51,N with scaling exponentsd generate monof-
ractal trajectories@z( i )# i 51,N with fractal dimension D
51/d.

Let us now consider two time series$xi% i 51,N ,$yi% i 51,N
whose correlation has to be characterized, and suppose
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both of them satisfy individually the scaling equation~3!,
with scaling exponentsdx and dy . Furthermore, it is as-
sumed that̂ x&5^y&50.

It may be shown~see the Appendix for details! that if the
two series are statistically independent, the traject
@zx( i ),zy( i )# i 51,N is monofractal with fractal dimension

D5
dx1dy

2dxdy
. ~8!

This result shows that the fractal dimension of the ani
tropic trajectory coincides with the reduced mass of a tw
body system with masses given by the scaling exponents
us now apply the previous result to evaluate the fractal
mension of a two-dimensional trajectory originating fro
normal Brownian motion (d50.5), fractional Brownian mo-
tion with Hurst exponentH (d5H), and Lévy flights with
2,m,3 ~ because the random numbers should have fi
mean value!. It is clear that in the case of isotropic diffusion
when dx5dy5d, we obtainD51/d. In the other cases we
have

normal-fractional:

~dx ,dy!5~0.5,H !→D511
1

2H
, ~9!

normal-Lévy:

~dx ,dy!5S 0.5,
1

m21D→D5
m11

2
, ~10!

fractional-Lévy:

~dx ,dy!5S H,
1

m21D→D5
m21

2
1

1

2H
, ~11!

Lévy-Lévy:

~dx ,dy!5S 1

mx21
,

1

my21D→D5
mx1my

2
21.

~12!

However, the real interest of our result resides in the c
in which we detect a deviation from the theoretical valu
i.e., when the two time series are not independent. Each
series could, singularly taken, generate a diffusion proc
with scaling exponentdx ,dy , but, due to the existence of
strong correlation between the two sequences, they can
duce a trajectory in the two-dimensional Euclidean sp
with fractal dimension different from the theoretical on
Furthermore, it is also possible that the trajecto
@zx( i ),zy( i )# i 51,N is multifractal, see@12,13#, due to the non-
constant behavior of the correlation. In the case of inhom
geneous fractals, the deviation from the homogeneity
given by the evaluation of the Renyi dimensionsDq , which
estimate the moments of the distribution of the local scal
exponents@14#. Then we propose to evaluate the function
2-2
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Cq5
dx1dy

2dxdy
2Dq , ~13!

whereDq are the Renyi dimensions, which can be evalua
numerically from the trajectory@zx( i ),zy( i )# i 51,N . In the
case of two statistically independent signals, the functionCq
is identically equal to zero for every value of the parame
q. WhenCq is a constant function ofq ~monofractal trajec-
tory! and different from zero, we have a homogeneous c
relation between the sequences; indeed, the constancy o
function Cq means that the correlation between the
quences is not time-dependent. In the more interesting
in which the correlation between the sequences is tim
dependent, we can distinguish different situations, such
for instance, the presence of an intermittent correlation,
observing the behavior of the functionCq .

We will show an example of a two-dimensional chao
map, in which the mean correlation^xiyi& is close to zero. In
this map, the correlation between the sequences is hi
intermittent and we show that our functionCq can measure
such intermittency. We consider a two-dimensional m
based on the Manneville map@15#. The Manneville map is
an example of a discrete dissipative dynamical system w
intermittency, an alternation between long regular pha
called laminar, and short irregular phases, called turbul
The map, which is defined on the intervalI 5@0,1#, by the
relation

xn115xn1xn
z ~mod1! z.1, ~14!

has been used as a simple model displaying complicated
havior, as it may appear in fluid dynamics or in DNA s
quences @16#. We analyze the correlation of a two
dimensional intermittent map where the variablexi is ruled
by the Manneville map and the variableyi is a Gaussian
distributed random number ifxi.e andyi5xi elsewhere. It
is clear that the correlation betweenxi and yi is ruled bye
P@0,1#, which establishes the length of the lamina
correlated phase, see Fig. 1. Indeed, when the variablexi is

FIG. 1. The sequencesxi generated by the Manneville map wit
z51.2. The value ofe is established when the two-dimension
signal is not correlated.
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greater thane, the variableyi is a random number and henc
is not correlated withxi . In our specific example, by taking
z51.2, e50.4, andN530 000, the mean correlation coeffi
cent is^xiyi&/sxsy520.07. In practice, the standard mea
correlation analysis suggests that the sequences are, on
age, not correlated. We show that our method is able to
ognize the strong intermittent correlation. First we evalu
the scaling exponent dx ,dy of the signals
$xi% i 51,N ,$yi% i 51,N . Figure 2 shows that the scaling exp
nents aredx5dy50.5. We have to evaluate now the functio
Cq of the trajectory„zx( i ),zy( i )…i 51,N , see Fig. 3. We limit
ourselves to evaluating the correlation dimension of the tw
dimensional trajectory~the Renyi dimensionD2! via the
Grassberger-Procaccia algorithm@17#. Figure 4 shows that
the correlation dimensionD2 is equal to 1.7460.02 so that
C250.26, which is well removed from the theoretical valu
C250 corresponding to statistical independence. The co
lation dimension D2 of the trajectory „zx( i ),zy( i )…i 51,N
shows unambiguously that the sequences are strongly c

FIG. 2. Evaluation of the scaling exponentsdx50.5 ~bottom!
anddy50.5 ~top! of the intermittent map via the diffusion entrop
method.

FIG. 3. Trajectory„zx( i ),zy( i )…i 51,N of the intermittent map
with N530 000,e50.4, andz51.2.
2-3
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lated, providing more complete information with respect
the standard mean correlation coefficient. A full characteri
tion of the intermittency of this correlation is not the aim
the present example and might be obtained by measu
further Renyi dimensions and by analyzing the shape of
function Cq . The previous application shows that there e
ists a wide class of two-dimensional maps, and more in g
eral of two-dimensional signals, for which a statistical a
proach based on the multifractal distribution of the tw
dimensional random walk may be applied to overcome so
limitations of the standard tools. The proposed method,
though still unable to exactly localize a particular feature d
to its statistical approach, may be useful to characterize
correlation distribution of this kind of complex system.

APPENDIX

We have to prove the relation described by Eq.~8!. Let us
consider two statistically independent sequences$xi% i 51,N
and $yi% i 51,N , which individually satisfy the scaling equa
tions with scaling exponentsdx and dy . Furthermore, it is
assumed that both sequences have a null mean value
generate two new sequences

zx~ i !5(
j 51

i

xj ,

zy~ i !5(
j 51

i

y j ,

FIG. 4. Evaluation of the correlation dimensionD2 of the tra-
jectory „zx( i ),zy( i )…i 51,N via the Grassberger-Procaccia algorith
We obtainD251.7460.02 andC250.26.
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and we definep„( i , j ),l … as the cumulative probability that

uzx~ i !2zx~ j !u, l ,

uzy~ i !2zy~ j !u, l ,

andpx„( i , j ),l …, py„( i , j ),l … the probabilities that the previou
relations hold for the single components. The probability
find points inside a box of sidel centered in„zx( i ),zy( i )… in
the case of independent time series is given by the relat

P~ i ,l !5
1

N (
j

px„~ i , j !,l …py„~ i , j !,l ….

The particular choice of„zx( i ),zy( i )… is not important due to
the assumption of independency, and we can considerP( i ,l )
as the dot product between the probability vectors. Rem
bering that given two arbitrary vectorsa,b in the
N-dimensional Euclidean space the dot product can be ea
evaluated aŝa,b&5iaiibicosu, we obtain

P~ i ,l !5
1

N
ipx~ i ,l !iipy~ i ,l !icosu,

whereu is the angle between the probability vectors. Now
is sufficient to observe that

1

N
ipx~ i ,l !i25

1

N
^px„~ i , j !,l …,px„~ i , j !,l …&' l 1/dx,

1

N
ipy~ i ,l !i25

1

N
^py„~ i , j !,l …,py„~ i , j !,l …&' l 1/dy,

to conclude that

P~ i ,l !5 l 1/2dxl 1/2dx cosu,

and hence

P~ i ,l !5 l (dx1dy)/2dxdy1e,

wheree5 logl(cosu). The previous relation is the main resu
concerning the anisotropic diffusion. In the limit ofl→0, we
havee→0. Indeed, cosu is a number between 0 and 1~al-
ways different from 0! and l is definitively less than 1; then
lim

l→0
logl(cosu)50. Thus we have proved that given tw

statistically independent sequences with scaling expon
dx and dy , we can generate an anisotropic trajecto
„zx( i ),zy( i )…i 51,N with fractal dimension given by the rela
tion

D5
dx1dy

2dxdy
.
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