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Anisotropic diffusion and correlation analysis
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A method of statistical analysis of the correlation between two given scale invariant sequences is proposed.
The relation between the fractal dimension of a two-dimensional random walk, generated with jumps derived
from the signals, and the scaling exponents of the sequences is investigated, and a well-defined relation is
found in the case of statistically independent signals. The method of analysis, whose performance is described
for the case of an intermittent map, might represent a new tool for the study of the correlation between coupled
complex systems.
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[. INTRODUCTION Specifically, we show that, if the signals are statistically
independent, with scaling exponengg and 6,, and with

It is now well known that even very simple coupled non- finite mean value, the two-dimensional trajectory
linear equations can generate random behavior and selfz,(i),z,(i))i-1n is monofractal with fractal dimension
organized stuctures such as, for instance, vortices in fluids
[1]. The diffusion approach, based on the pioneering contri-
bution of Hurst and Mandelbrdsee, e.g.[2]), is a method )
to analyze such complex systems and to measure the long- 28,0y
range memory of a given sequence. This method allows the

phySiC&' origin of fluctuations having finite variance to b6The new correlation functiom:q is able to recognize the

explained and is able, in the case of steady systems, to deteggrrelation evolution even in the case of chaotic maps or
the single or multiple scaling exponents and hence to recogsery noisy data where standard methods usually fail. As an
nize strange kinetics and anomalous diffusi@]. example, we study a two-dimensional intermittent chaotic

The diSCOVGry of the Widespread existence, both ir}nap, ha\/ing a mean Corre|ati@éﬂiyi> close to zero.
Hamiltonian and dissipative systenf§,6], of stable pro-

cesses with infinite variancé_évy processesencouraged
the development of time-series analyses that do not involve [l. THE DIMENSIONAL CORRELATION
the mean-square displacement. A specific method to deal
with these systems is based on the evaluation of the scalir“;I

: ain idea of the entropy method is remarkably simple and is
SIXeFLOnesgéstevrlr?sthec!iesgc??bnec:jn etr)l;ﬂizyS]-clonug:g c%?e cs)fegzrgr'lcebased on the generalized central limit theofdy. We have

t analyze a single signgk;}; -, and to detect, if it exists,

e mponant o the ea] Undelsaning gre scaing exponert hich s & messure of e ongrange
y y y 9 emory of the sequence. Many stationary phenomena are

the cqupllng between t_he two sequences, but also its tlm|(?1deed characterized by a single scaling exponent; our analy-
evolution. In fact, the simple evaluation of the mean corre-

lation function is clearly misleading in the presence of forsis will be limited to just this class of time sequences. Let us
. . y 9 P ) '~ consider an integer numbérwith 1<t<N, which will be
example, intermittent features. On the other hand, in the casé s N .
! . referred to as “time.” We thus generaté—t+1 “trajecto-
of chaotic sequences dominated by a whole spectrum of fre=” ~, o . )
T e ) . ries” considering the following sums:
guencies, it is very difficult to detect time features using only
tools based on the Fourier transform, such as the wavelet
analysis(see, e.9.[9,10]). The aim of the present work is to
overcome these limitations by deriving a new function of zj(t)= IZ Xi . 2
correlationC, in the case of sequences characterized by a -
monoscaling property. This function, which is equal to zero
in the case of statistical independence, estimates the correl@herefore, the valug;(t) has to be considered the final po-
tion distribution betweerix;}; -1y and{y;}i—1n by evaluat-  sition of a walker which jumped fartimes. If p(z,t) is the
ing the inhomogeneity of the two-dimensional trajectoryprobability to be in positionz after t jumps, we want to
(z4(i),z,(i)) defined as observe the “time” evolution of such a distribution. The
monoscaling condition means that the probability follows the
following rule:

L

€y

We begin by recalling the diffusion entropy method. The

P=j+t

Z,(i+1)=z(i)+x;,

1 z
H==F =], 3
zy(i+1)=z,(i)+y;. p(z) t° (t‘s) ®
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where F, due to the central limit theorem, is Gaussian- orboth of them satisfy individually the scaling equati¢®),

Lévy-shaped. The diffusion entropy method evaluates thavith scaling exponentss, and dy . Furthermore, it is as-

scaling exponend by calculating the Shannon entropy of the sumed tha{x)=(y)=0.

probability p(z,t), It may be showr(see the Appendix for detajlshat if the
two series are statistically independent, the trajectory

+oo . T . . . .
S(t)=— f_ o(z.0)n(p(z,1)dz. @) [24(i),zy(i)]i=1n is monofractal with fractal dimension
Oty
Indeed, for a distribution having scaling properties, it is very D= 25,0, ®

easy to demonstrate, by substituting E3).into Eq. (4), that

S(t)=A+ &Int, whereA is the Shannon entropy of the gen- This result shows that the fractal dimension of the aniso-
erating functiorf. The diffusion entropy method is very use- tropic trajectory coincides with the reduced mass of a two-
ful to understand the dynamics whéx};—,y areN statisti-  body system with masses given by the scaling exponents. Let
cally independent random numbers with infinite variance. Inus now apply the previous result to evaluate the fractal di-
fact, if the probability density functiop(x) of the random mension of a two-dimensional trajectory originating from
numbers goes to infinity as a power law, wiplix)~x"#, normal Brownian motion §=0.5), fractional Brownian mo-
the generalized central limit theorem, developed by Paufion with Hurst exponent (6=H), and Levy flights with
Levy in the 1920s and 1930s, allows the relation betwgen 2< ;<3 ( because the random numbers should have finite

and the scaling expone@tto be estimated: mean valug It is clear that in the case of isotropic diffusion,
when §,= 6,= 6, we obtainD=1/5. In the other cases we
5= —1 for 1<u<3 have
n—1 ’
normal-fractional:
6=05 for u>3. (5) 1
In an experimental situation we can evaluate both the (5,0 =(03H) =D =1+ 5. ©
power law of the distribution, by observing the statistics of
the data, and the scaling exponéhtby calculating the Sh- normal-Levy:
annon entropy. In the presence of a single scaling exponent
o, if the relations(5) are not satisfied, as for the human (8,6 )=(O 5L>HD=’M—+1 (10)
heartbeat[7], we can assume that the random data are Xy Tn—1 2

strongly correlated with long-range memory.
From a different point of view, it is possible to put in fractional-Lavy:
relation the scaling exponerdt of the time series with the

fractal dimension of the random walk, B 1 w—1l 1
| (5X15y)—(H,m>—>D—T+ﬁ, (11
2(i)= 121 X ©) Lévy-Lévy:
genergted by the sequence. It is easy to shmg, e.g.[z]), (5,6 ):( 1 , 1 >—>D= Mxt iy 1
by using the definition of moments, that if the signal 1py—1 2
{Xi}i=1n has a scaling expone#t then the generated trajec- (12)

tory [z(i)]i—1n is monofractal with a fractal dimension

=1/6. Indeed, if we evaluate the structure functions of the  However, the real interest of our result resides in the case
trajectory[ (i) ]i-1n, We obtain the moments of the previ- jn which we detect a deviation from the theoretical value,

ously defined distributiom(z,t), i.e., when the two time series are not independent. Each time
. series could, singularly taken, generate a diffusion process

(|Zj(t)|q>=f |z|qp(z,t)dz=t5qu. @) \;\ilrtgnscahng ex_ponenﬁx,éy, but, due to the existence of a
—w g correlation between the two sequences, they can pro-

duce a trajectory in the two-dimensional Euclidean space

Remembering that in the fractal literatUrE2] the linear be-  with fractal dimension different from the theoretical one.
havior of the structure functions means that the trajectory is-urthermore, it is also possible that the trajectory
homogeneous and hence monofractal, we can assume thai(i),z,(i)]i-1y is multifractal, se¢12,13, due to the non-
signals{x;}j—,n with scaling exponent$ generate monof- constant behavior of the correlation. In the case of inhomo-
ractal trajectories[z(i)];—,n Wwith fractal dimensionD geneous fractals, the deviation from the homogeneity is
=1/6. given by the evaluation of the Renyi dimensiddg, which

Let us now consider two time serids}i—;n.{Yili—1n  €Stimate the moments of the distribution of the local scaling
whose correlation has to be characterized, and suppose thetponentg14]. Then we propose to evaluate the function
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] ] FIG. 2. Evaluation of the scaling exponenis=0.5 (bottom
FIG. 1. The sequences generated by the Manneville map with g 8,=0.5 (top) of the intermittent map via the diffusion entropy
z=1.2. The value ofe is established when the two-dimensional yathod.

signal is not correlated.

greater thare, the variabley; is a random number and hence
_ Ot oy _ (13) is not correlated with; . In our specific example, by taking
4 26,6, - z=1.2, e=0.4, andN= 30000, the mean correlation coeffi-
o ) _ cent is(x;y;)/ oxoy,=—0.07. In practice, the standard mean
whereD are the Renyi dimensions, which can be evaluate¢greation analysis suggests that the sequences are, on aver-
numerically from the trajectoryz,(i),z,(i)]iin- In the  age, not correlated. We show that our method is able to rec-
case of two statistically independent signals, the fundign  ognize the strong intermittent correlation. First we evaluate
is identically equal to zero for every value of the parametegne scaling  exponent &,,6, of the signals
d. WhenC, is a constant function of (monofractal trajec- {x}i_in.{Yiti—1n. Figure 2 shows that the scaling expo-
tory) and different from zero, we have a homogeneous corpents ares, = 5,=0.5. We have to evaluate now the function
relation between the sequences; indeed, the constancy of tﬁ% of the trajectory(z,(i),z,(i))i—1n, See Fig. 3. We limit

function C, means that the correlation between the seyyrselves to evaluating the correlation dimension of the two-
quences is not time-dependent. In the more interesting casmensional trajectory(the Renyi dimensiorD,) via the
in which the correlation between the sequences is timegyassherger-Procaccia algoritt7]. Figure 4 shows that
dependent, we can distinguish different situations, such agpe correlation dimensiod, is equal to 1.74 0.02 so that
for instance, the presence of an intermittent correlation, b3C2=0.26, which is well removed from the theoretical value
observing the behavior of the functidy, . _ _ C,=0 corresponding to statistical independence. The corre-
We_ will _show an example of_a two—_d|menS|onaI chaotic |5tion dimensionD, of the trajectory (z,(i),2,(i))i-1n
map, in which the mean correlatigm;y;) is close to zero. In  ghaws unambiguously that the sequences are strongly corre-
this map, the correlation between the sequences is highly
intermittent and we show that our functi@@y, can measure 80
such intermittency. We consider a two-dimensional map
based on the Manneville mdA5]. The Manneville map is oo
an example of a discrete dissipative dynamical system with
intermittency, an alternation between long regular phases 4o}
called laminar, and short irregular phases, called turbulent
The map, which is defined on the interda+[0,1], by the 20
relation

Xpi1=Xp+X5  (modl) z>1, (14

has been used as a simple model displaying complicated be
havior, as it may appear in fluid dynamics or in DNA se- -4}
guences [16]. We analyze the correlation of a two-

dimensional intermittent map where the variakjes ruled -6or
by the Manneville map and the variabjg is a Gaussian .
distributed random number ¥, > € andy;=x; elsewhere. It HMe0 w0 20 0 0 60 40 20 0 20

is clear that the correlation betwegnandy; is ruled bye

€[0,1], which establishes the length of the laminar- FIG. 3. Trajectory(z,(i),z,(i))i—1n Of the intermittent map
correlated phase, see Fig. 1. Indeed, when the varighike  with N=30000, e=0.4, andz=1.2.
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3 - y and we defing((i,j),l) as the cumulative probability that
25 ] |Zx(i)_zx(j)|<|,
.,«/' ."\ |Zy(i ) _ Zy(j )| <| ,
2o Y D174

o . andp,((i,j),1), py((i,j).l) the probabilities that the previous
g [T IR Akt i ot St ot - relations hold for the single components. The probability to
£ 15 e 1 find points inside a box of sidecentered in(z,(i),z,(i)) in
\ the case of independent time series is given by the relation

s, P = 2 P(EDDPy((L).D.

o5

The particular choice ofz,(i),z,(i)) is not important due to

1 the assumption of independency, and we can con$tdet)

35 =T i as the dot product between the probability vectors. Remem-
In(r) bering that given two arbitrary vectorgb in the

N-dimensional Euclidean space the dot product can be easily

evaluated aga,b)=||a/||b|cos#, we obtain

FIG. 4. Evaluation of the correlation dimensi@n, of the tra-
jectory (z,(i),z,(i))i—1n Via the Grassberger-Procaccia algorithm.
We obtainD,=1.74+0.02 andC,=0.26. 1
. . o P(i.1) =l Dllllpy (i, Dlcose,
lated, providing more complete information with respect to

t_he standar_d mean correlatlor_1 coeff|C|e_nt. Afull charac'terlzawherea is the angle between the probability vectors. Now it
tion of the intermittency of this correlation is not the aim of

the present example and might be obtained by measurinng’ sufficient to observe that

further Renyi dimensions and by analyzing the shape of the 1 1

function C,. The previous application shows that there ex- N||px(i,I)szﬁ(px((i,j),l),px((i,j),I))%Il"Sx,
ists a wide class of two-dimensional maps, and more in gen-

eral of two-dimensional signals, for which a statistical ap- 1 1

proach based on the multifractal distribution of the two- N||py(i ,I)||2=N<py((i J).0,py((0,), Dy =11,
dimensional random walk may be applied to overcome some

limitations of the standard tools. The proposed method, aliy conclude that

though still unable to exactly localize a particular feature due

to its statistical approach, may be useful to characterize the P(i,1) =124 Y2%cosg,
correlation distribution of this kind of complex system. and hence

APPENDIX P(i.1)=1(5+3)/20,8,+

We have to prove the relation described by B). Letus  \heree=1log(cos6). The previous relation is the main result
consider two statistically independent sequenfe$i_1n  concerning the anisotropic diffusion. In the limitlofs 0, we
and{yi}i-1n, Which individually satisfy the scaling equa- havee—0. Indeed, co$ is a number between 0 and(al-
tions with scaling exponents, and 6, . Furthermore, it is  ways different from ®and| is definitively less than 1; then

assumed that both seqguences have a null mean value. Wﬁ]l Olog|(C056)=0. Thus we have proved that given two
generate two new sequences o . . .
statistically independent sequences with scaling exponents

oy and 6,, we can generate an anisotropic trajectory

i
zX(i)zz X, (z4(i),2,(i))i=1n With fractal dimension given by the rela-
=1 tion
i
O+ by
4 | = i D: .
y( ) j§=:l y] 25x5y
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